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The possible existence of mode localization in a chain of flexibly interconnected

cylinders, representing a high-speed train travelling in a tunnel is investigated, in the

presence of some disorder in the chain. Specifically, imperfections in the mass and

springs in the model are considered as possible sources of mode localization, and it is

high-speed trains running in a tunnel, or more generally of a train-like system travelling

in a coaxial cylindrical tube and subjected to aerodynamic forces associated with lateral

motions of the cylinders. Each cylinder in the model is coupled to the other cylinders

and is supported by springs, such that it has both translational and rotational degrees of

freedom. Two models are used: a lumped-parameter Euler–Bernoulli beam model (LEB)

and a lumped-parameter Timoshenko-beam model (LTB). The results of this study show

that Timoshenko beam effects of rotational inertia and shear deformation have a

considerable influence on the mode localization phenomena and that imperfections in

the supporting springs have a considerable influence on the stability of the LTB model.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Fluid–structure interactions of high-speed trains have been studied in Japan since 1986 as one of the issues affecting
ride quality. As trains travel at higher speeds, the vibration amplitudes become greater, especially in tunnel sections.
Vibrations and pressure fluctuations on the sides of the cars have been measured simultaneously, both in the open and in
tunnel sections, and aerodynamic forces on the cars were calculated from the pressure data. It was found that lateral and
yawing vibrations of the cars have a close correlation with the aerodynamic force acting on the cars [1–3]. To investigate
the flow structure around the trains especially in tunnels, field measurements, wind tunnel experiments, and numerical
simulations have been conducted [4–7]. Interested readers are encouraged to refer to [8] for more information.

Trains and train-like articulated systems consist of a chain of cars with similar mechanical properties, and consequently
they can be considered as periodic structures (i.e. structures made up of a repeated basic substructure). Periodic structures
generally possess some irregularities because the substructures cannot be produced precisely identical to each other; in
addition, the structural properties change with age. Mode localization is the phenomenon of trapping vibrational energy in
a specific part of a periodic structure when it has small structural irregularities (‘‘disorder’’). When mode localization
occurs, the amplitude of a specific part of the structure is larger than for the rest. Thus, this phenomenon may cause serious
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structural and/or dynamics problems. Consequently, investigation of the extent and sensitivity to mode localization is
critical; moreover, the resultant changes to the mode shapes can be quite important.

Mode localization phenomena were first studied in the field of solid-state physics, in which the existence of localization
of the electron eigenstates in a disordered solid was predicted [9]. Work in structural dynamics showed that vibrations in
disordered periodic structures may be confined to a segment of the system due to structural irregularity; i.e., here too,
mode localization phenomena may arise [10]. It was demonstrated theoretically and numerically that mode localization
phenomena may occur in large space structures, where the importance of coupling strength between interconnected
substructures was also investigated [11]. The structure is not sensitive to imperfections when the coupling between the
substructures is strong. The phenomena of weak and strong localization were shown to occur for strong and weak coupling
between substructures, respectively, in one-dimensional imperfect discrete [12] or continuous [13] structures. In Ref. [12]
it was illustrated that weak localization occurs in systems with strong internal coupling and weak disorder while strong
localization occurs in those with weak internal coupling and weak disorder. Strong vibration localization has been mainly
studied in engineering structures because only a few substructures participate in the motion of the structure and they
affect the dynamics of the structure considerably. Hence, here we mainly focus on strong localization and the word
‘‘localization’’ used in this paper means ‘‘strong localization’’.

A perturbation method was developed to obtain theoretically the localized modes of vibration of the disordered system
of multi-span beams theoretically using Euler–Bernoulli beam theory [14]. Later, localization in multi-span beams on
flexible supports was investigated using Timoshenko beam theory, which includes shear deformation and rotational inertia
effects for dealing with higher-order modes [15]. Localization of oscillations in nonlinear systems has also been
investigated [16,17] and a concept of nonlinear normal modes was proposed [18].

Most previous studies did not deal with systems of rigid bodies, but instead considered either point masses joined to
each other by springs, or continuous beams on supports. In the present study, mode localization phenomena in a train of
rigid bodies with elastic supports, joined to each other by translational and rotational springs and subjected to fluid
dynamic forces are studied. The effect of imperfections in the mass, the supporting springs (either translational, or
rotational) and the fluid dynamic forces on mode localization in finite-length train models are clarified by examining the
mode shapes of the system.

In Section 2, the systems considered and the modelling assumptions are described [8,19]. Then the derivation of the
equations of motion by the Lagrangian method is outlined; the equations are linearized, reduced to a standard eigenvalue
problem, and solved numerically. In Section 3, the local and distributed imperfections considered in the analysis are
described. In Section 4, mode localization phenomena in the LTB model in still fluid (u=0) are investigated by examining the
mode shapes, and then the conditions of mode localization due to imperfections in the mass or springs are identified. In
Section 5, mode localization phenomena in the LEB model in still fluid (u=0) are investigated. In Section 6, a discussion of
mode localization in the LTB and LEB models is given. In Section 7, the dynamics of the disordered system of a LTB train
subjected to flow is investigated. Finally, the conclusions are summarized in Section 8.
2. Theoretical model of the dynamics

The LTB and LEB models utilized in this paper have been developed in Refs. [19,8]. Accordingly, a highly abbreviated
derivation of the equations of motion is given here.
2.1. Description of the system and assumptions

In order to achieve a description of the overall motion of a train passing through a tunnel, a large number of simplifying
idealizations have to be introduced both in mechanics and fluid mechanics.

First, assumptions in mechanics are described. Simulation of translational and rotational motions of train dynamics
commonly involves 17 or more degrees of freedom for each car and interaction between wheels and rails [20]. Since the
main concern of the present study is to examine the effect of the aerodynamic forces on trains and train-like articulated
systems, generally in the presence of some disorder, the simplest approach has been adopted: an actual vehicle with two
bogies (wheel assemblies) is simplified to a cylindrical body supported only on two sets of translational springs and
dampers; i.e., the bogies are modelled by springs and dampers. These cylindrical cars are coupled by springs and dampers
and they can perform translational and rotational oscillatory motions in a cylindrical duct. It is assumed that there is no
slip between the wheels and the rails in the lateral direction. In this situation, approximating the reaction of the rails
against the lateral wheel motion by a spring-dashpot element is fully justified. It should be mentioned, however, that only
the onset of train instability can be analyzed under this assumption.

The system under consideration is shown in Fig. 1. It consists of N rigid cylindrical cars that can only perform
lateral translational y*(t) and yawing aðtÞ oscillatory motions of small amplitude in the cylindrical duct. Each car is attached
to the duct (effectively the rails or the ‘‘ground’’) via two sets of translational springs and dampers (kf, kb, cf, and cb; f for
front, b for back). Rotational and translational springs and dampers are also considered for interconnecting the cars (kZ, ka,
cZ, and ca).
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Fig. 1. Geometry of (a) a vehicle and a simplified cylindrical car, (b) N interconnected rigid cylindrical cars, and (c) the jth oscillating cylindrical car in the

cylindrical duct. The variables with an asterisk are dimensional quantities.
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The following assumptions in fluid mechanics are made: (a) the fluid is incompressible and of uniform density; (b) the
leading and trailing cars comprise streamlined ends and no local separation of the flow takes place along the train; and (c)
boundary layer development on the tunnel wall is ignored. Note that the pressure waves that exist in railway tunnels may
be categorized into two main types: pressure waves generated when trains enter and leave tunnels, and those associated
with boundary layer growth along the train [7,21–23]. The former change the speed of air flow as they travel back and forth
in the tunnel but does not generate forced vibration of the train because the pressure waves can be considered as plane
waves in the tunnel and thus aerodynamic forces acting on the two sides of the train cancel each other out. Representative
of the latter type are the pressure fluctuations acting mainly on one of the two sides of the train, which results in forced
vibration of the train. Since the effect of these pressure fluctuations on the dynamics has been studied in a previous study
[8], they are not included here.

The forces associated with the structure itself are taken into account in the kinetic, dissipation and potential energies of
the system. The fluid forces could in principle be determined by an appropriate solution of the Navier–Stokes equations.
This will not be attempted here; instead, the fluid forces are determined essentially by superposition: inviscid and viscous
forces are determined separately, based on Paı̈doussis’s work [24,25]. This has been shown to be quite acceptable [24–26],
even for more complex systems [26,27]. It has also been used for the train-like system considered here, in Refs. [19,8]. The
hydrodynamic forces are incorporated partly in the kinetic energy and partly as generalized forces.

To obtain the equations of motion by application of the Lagrange equations, we now proceed to formulate the kinetic,
dissipation, and potential energies of the system and the generalized forces.
2.2. Kinetic, dissipation, and potential energies of the structure

The kinetic energy of the jth car, Tsj, is

Tsj ¼
1

2
mj _y

�

cjðtÞ
2
þ

1

2
Jcj _ajðtÞ

2, (1)

where mj is the mass of the jth car and Jcj is its mass-moment of inertia about the centre of mass.
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The dissipation energy of the jth car, Dsj, is

Dsj ¼
1

2
cfjð _y

�

cj�bl�j _ajÞ
2
þ

1

2
cbjð _y

�

cjþbl�j _ajÞ
2
þ

1

2
cajð _aj� _aj�1Þ

2
þ

1

2
cZjfð _y

�

cj�l�j _ajÞ�ð _y
�

cj�1þ l�j�1
_aj�1Þg

2

þ
1

2
cajþ1ð _ajþ1� _ajÞ

2
þ

1

2
cZjþ1fð _y

�

cjþ1�l�jþ1
_ajþ1Þ�ð _y

�

cjþ l�j _ajÞg
2, (2)

where b is the displacement coefficient for the supporting spring from the centre of the car as shown in Fig. 1(a) and lj
* is

the half-length of the jth car.
Finally, the potential energy of the jth car, Vsj, is

Vsj ¼
1

2
kfjðy

�
cj�bl�j ajÞ

2
þ

1

2
kbjðy

�
cjþbl�j ajÞ

2
þ

1

2
kajðaj�aj�1Þ

2
þ

1

2
kZjfðy

�
cj�l�j ajÞ�ðy

�
cj�1þ l�j�1aj�1Þg

2

þ
1

2
kajþ1ðajþ1�ajÞ

2
þ

1

2
kZjþ1fðy

�
cjþ1�l�jþ1ajþ1Þ�ðy

�
cjþ l�j ajÞg

2: (3)

2.3. Kinetic energy of the fluid

The conservative inviscid part of the fluid dynamic forces can be included in the total kinetic energy of the system.
Lighthill’s [28] work, which is essentially an application of slender-body theory, is adopted. By this theory, the lateral
velocity of the fluid on the inclined jth car moving laterally is given by (Fig. 2)

vfjðx
�
Þ ¼ _y�j ðtÞ ¼ _y

�

cjðtÞþx
� _ajðtÞþUajðtÞ, (4)

where U is the flow velocity in the space between the sides of the train and the tunnel in the train coordinate system; a
detailed derivation may be found in Ref. [19]. The kinetic energy of the lateral fluid flow around the jth car is

Tfj ¼

Z l�
j

�l�
j

1

2
Mv2

fjðx
�
Þdx�, (5)

where M¼ wrA is the virtual mass of the fluid for such lateral motions of the car, r is the fluid density, A is the cross-
sectional area of the car, and w¼ ðR�2þa2Þ=ðR�2�a2Þ, where a is the radius of the cylindrical car and R* the tunnel radius, is
related to confinement by the tunnel. Substituting (4) into (5), one obtains

Tfj ¼ wrAl�j
1

3
l�2j
_ajðtÞ

2
þð _y�cjðtÞþUajðtÞÞ

2

� �
: (6)

2.4. The generalized forces on a middle (jth) car

Next, the nonconservative generalized forces will be derived. Forces other than the conservative inviscid fluid dynamic
forces acting on the system are shown in Fig. 3: viscous forces, pressure gradient forces, nonconservative inviscid forces,
and form drag. Apart from the leading (j=1) and trailing (j=N) cars, two aerodynamic forces (other than the inviscid ones)
act on the middle cars (j=2,y,N): viscous and pressure gradient forces, as shown in Fig. 3.

The viscous forces per unit length of the jth car in the normal and longitudinal directions FNj and FLj are given by
Taylor [29]:

FNj ¼
1

2
rD�U2ðCN siniþCDp sin 2iÞ, FLj ¼

1

2
rD�U2CT cos i, (7)

where i¼ tan�1ðqy�=qx�Þþtan�1fðqy�=qtÞ=Ug is the angle of inclination of the car to the flow, as in Fig. 4; D* is the car
diameter, CN and CT are the frictional drag coefficients in the normal and tangential directions, respectively, and CDp is the
form drag coefficient. For small qy�=qx� and ðqy�=qtÞ=U, Eq. (7) may be written as

FNj ¼
1

2
rD�UCN

qy�j
qt
þU

qy�j
qx�

� �
þ

1

2
rD�CD

qy�j
qt

� �
, FLj ¼

1

2
rD�U2CT , (8)
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Fig. 2. Calculation of the relative fluid-body velocity in the normal direction of the jth cylindrical car.



c

lj
*lj

*

ycj
* yj

*
FNj

Fpyj

FLj

j th cylinder

c

l1
*l1

*

yc1
* y1

*
FN1

Fpy1

FL1

1st cylinder
Fn

Fb

c

lN
*lN

*

ycN
* yN

*
FNN

FpyN

FLN

N th cylinder

Ft

U

Centreline
of track

1α jα Nα

ξ ξ ξ

Fig. 3. Forces acting on cylindrical cars and on elements dx of the 1st, jth, and N th cylindrical cars.

x

y
slope

U *dy
dt2i *

*

dy
dx

=

1i
2i

Fig. 4. Calculation of the angle of incidence i of the cylindrical car, i= i1+ i2.

Y. Sakuma et al. / Journal of Sound and Vibration 329 (2010) 5501–5519 5505
where the second term in FN represents a linearization of the quadratic viscous force at zero flow velocity,
1
2rD�CDpjqy�j =qtjðqy�j =qtÞ, in which the drag coefficient represents CD ¼ CDpjqy�j =qtj.

The pressure gradient forces in the x and y directions acting on the jth car equipped with hoods are given by [19]

Fpx,j ¼�2l�j Að1�eÞdp

dx
, Fpy,j ¼�2l�j Að1�eÞdp

dx
aj, (9)

where e is the ratio of cross-sectional area of the hood to that of the car. The pressure gradient distribution may be written
as

A
dp

dx
¼�

1

2
rD�U2CT

D�

D�h

 !
¼�

raU2CT

rh
, (10)

where Dh
* =2(R*

�a) is the hydraulic diameter and rh=(R*
�a)/a is the ratio of the gap to the car radius.

Therefore, the virtual work associated with the virtual displacement dWj on the jth car is given by

dWj ¼

Z l�
j

�l�
j

ð�FNjþFLjajðtÞÞdðy�cjðtÞþx
�ajðtÞÞdx

�
þdWpj: (11)

Substituting Eqs. (8)–(10) into (11), we obtain the generalized forces Qycj and Qaj on the jth car, respectively, associated
with translational and rotational motions; refer to [19].

2.5. Additional generalized forces on the leading and trailing cars

In addition to the forces already formulated for any typical ‘‘middle car,’’ we take into account the nonconservative
inviscid forces, Fn and Ft (‘‘n’’ for nose, ‘‘t’’ for tail), and a form drag Fb acting on the leading (j=1) and trailing (j=N) cars,
respectively, as shown in Fig. 3 [19].

The nonconservative inviscid forces acting on the nose and tail of the system, Fn and Ft, may be written as

Fn ¼�ð1�fnÞwrAU
qy�1
qt
þU

qy�1
qx�

� �
, Ft ¼�ð1�ftÞwrAU

qy�N
qt
þU

qy�N
qx�

� �
, (12)

where fn and ft are parameters that are equal to or less than unity, which take into account loss in lateral momentum flux
due to the shape of the free end; for an ideally streamlined end, fn-1 or ft-1 [24,30]. The form drag of the trailing car, Fb,
associated with separation of the flow is given by

Fb ¼
1

2
rD�2U2Cb, (13)

where Cb is the base drag coefficient.
The virtual work associated with the first and last cars will therefore have the additional terms

dW 0

1 ¼ Fndy�c1ðtÞ�Fnl�1da1ðtÞ, (14)

dW 0

N ¼ fFtþFbaNðtÞgdðy�cNðtÞþ l�NaNðtÞÞ, (15)

respectively. Therefore, the appropriate additional generalized forces Q uyc1, Q ua1 and Q uycN , Q uaN may be obtained [19].
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2.6. The equations of motion

The total kinetic energy of the system, T, is given by T=Ts+Tf, where Ts ¼
PN

j ¼ 1 Tsj and Tf ¼
PN

j ¼ 1 Tfj are given by Eqs. (1)
and (6), respectively. Similarly, D¼

PN
j ¼ 1 Dsj and V ¼

PN
j ¼ 1 Vsj. Eqs. (1)–(3), (6), and the generalized forces Qycj and Qaj, Q u1

and Q ua1, Q uycN and Q uaN , while taking the summation over j into account, are substituted into Lagrange’s equations

d

dt

qT

q _qi

� �
�

qT

qqi
þ

qD

q _qi

þ
qV

qqi
¼ Qi, q1 ¼ y�cj, q2 ¼ aj, j¼ 1,2, . . . ,N,

thereby obtaining the equations of motion. Introducing the dimensionless quantities

x¼ x�=a, y¼ y�=a, l¼ l�=a, D¼D�=a¼ 2, t¼ t

ffiffiffiffiffiffiffiffiffi
k0

m0a

s
, u¼U

ffiffiffiffiffiffiffiffi
m0

k0a

r
,

o¼O
ffiffiffiffiffiffiffiffiffi
m0a

k0

r
, m¼ M0

m0
, kZj ¼

kZj

k0
, kaj ¼

kaj

a2k0
,

zZj ¼
cZjffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k0m0a
p , zaj ¼

caj

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0m0a

p , c¼ CD

ffiffiffiffiffiffiffiffi
m0

k0a

r
,

into the equations of motion, we obtain the dimensionless equations of motion for constant frictional viscous forces along
the train:

2ð1þwmÞlj
d2ycjðtÞ

dt2
þdj1wmð1�fnÞu

dyc1ðtÞ
dt �zZj

dycj�1ðtÞ
dt þ zfjþzbjþzZjþzZjþ1þ

2mlj
p ðuCNþcÞ

� �
dycjðtÞ

dt �zZjþ1

dycjþ1ðtÞ
dt

þdjNwmð1�ftÞu
dycNðtÞ

dt �dj1wmð1�fnÞl1u
da1ðtÞ

dt �zZjlj�1
daj�1ðtÞ

dt þf�bzfjþbzbj�zZjþzZjþ1þ2wmuglj
dajðtÞ

dt þzZjþ1ljþ1
dajþ1ðtÞ

dt

þdjNwmð1�ftÞlNu
daNðtÞ

dt �kZjycj�1ðtÞþðkfjþkbjþkZjþkZjþ1ÞycjðtÞ�kZjþ1ycjþ1ðtÞþdj1wmð1�fnÞu
2a1ðtÞ�kZjlj�1aj�1ðtÞ

þ lj ð�bkfjþbkbj�kZjþkZjþ1Þ�
2mu2

p 1�
e�1

rh

� �
CT�CN

� �� �
ajðtÞþkZjþ1ljþ1ajþ1ðtÞþdjNm wð1�ftÞ�

2Cb

p

� �
u2aNðtÞ ¼ 0, (16)

2lj
1

4
þ

l2j
3
þ

1

3
wml2j

( )
d2ajðtÞ

dt2
�dj1wmð1�fnÞl1u

dyc1ðtÞ
dt þzZjlj

dycj�1ðtÞ
dt þfð�bzfjþbzbj�zZjþzZjþ1Þ�2wmuglj

dycjðtÞ
dt �zZjþ1lj

dycjþ1ðtÞ
dt

þdjNwmð1�ftÞlNu
dycNðtÞ

dt
þdj1wmð1�fnÞl

2
1u

da1ðtÞ
dt

þð�zajþzZjlj�1ljÞ
daj�1ðtÞ

dt

þ ðb2zfjþb
2zbjþzZjþzZjþ1Þl

2
j þzajþzajþ1þ

2ml3j
3p ðuCNþcÞ

( )
dajðtÞ

dt

þð�zajþ1þzZjþ1ljljþ1Þ
dajþ1ðtÞ

dt þdjNwmð1�ftÞl
2
Nu

daNðtÞ
dt þkZjljycj�1ðtÞ

þð�bkfjþbkbj�kZjþkZjþ1ÞljycjðtÞ�kZjþ1ljycjþ1ðtÞ�dj1wmð1�fnÞl1u2a1ðtÞ
þð�kajþkZjlj�1ljÞaj�1ðtÞþfðb

2kfjþb
2kbjþkZjþkZjþ1Þl

2
j þkajþkajþ1�2wmlju

2gajðtÞ

þð�kajþ1þkZjþ1ljljþ1Þajþ1ðtÞþdjNm wð1�ftÞ�
2Cb

p

� �
lNu2aNðtÞ ¼ 0, for j¼ 1 to N: (17)

The linearized dimensionless equations of motion are rewritten in matrix form

½M�
€y
€a

� �
þ½C�

_y
_a

� �
þ½K�

y

a

n o
¼ f0g, (18)

where [M] is the mass, [C] the damping, and [K] the stiffness matrix; fyjagT ¼ fy1,a1,y2,a2, . . . ,yN ,aNg
T is the vector of the

generalized coordinates. Solutions are then sought of the form

y

a

n o
¼

y

a

� �
expðiotÞ ¼

y

a

� �
expðltÞ; (19)

substituting into the previous equation we obtain

ðl½I��½Y �Þffj g ¼ f0g, (20)

in which l¼ io; non-trivial solutions are obtained for detðl½I��½Y �Þ ¼ 0, yielding 2N eigenvalues of the matrix [Y], lj. The
generally complex eigenvalues lj of the system permit the assessment of (linear) stability for each set of system
parameters. For a stable system, the lj are either real and negative or complex conjugate pairs with negative real parts. The
corresponding eigenvectors are ffj g.
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Critical values of any given system parameter, in our case the flow velocity u, are associated with the state of neutral
stability of the system, where the eigenvalues of the linearized system contain a purely imaginary pair or a single zero
value. When the critical values are surpassed, the system becomes unstable.

2.7. LTB and LEB trains

Here we give the definition of LTB and LEB trains. First, we give the relationship for stiffness of the discrete and
continuous systems of the LTB system. The moment and shear forces acting on an element of the continuous model are
given by

M¼
EI

rr

, Q ¼ kuAGf,

where rr is the radius of curvature, A the cross-sectional area, E Young’s modulus, I the second moment of the cross-
sectional area, and kuG the effective shear modulus. Those of the discrete model are

M¼ kaa, Q ¼ kZl�cf,

where lc
* (=2l*) is the length of each car. By letting the moment and shear forces of the continuous system be equal to those

of the discrete one, we obtain

ka ¼
EI

rra
¼

EI

l�c
, kZ ¼

kuAG

l�c
: (21)

The rotational and translational spring constants, ka and kZ, interconnecting the cars are related to the flexural and shear
rigidity of the continuous system via Eq. (21). Based on these relationships, the discrete system of the train of cars may be
converted into a continuous Timoshenko-beam system and hence the present model of the train of cars can be considered
as a lumped-parameter Timoshenko-beam (LTB) model [19]. A significant feature of this system of flexibly interconnected
cars is that, unlike a Timoshenko beam in which the flexural and shear rigidities are interrelated in terms of the material
properties, in this case flexural and shear rigidities are related to different sets of springs; hence, by altering the values of
these springs, the equivalent Timoshenko model can be made to approach the Euler–Bernoulli model (instead of doing so
by slenderness considerations). Next, in order to obtain the equivalent continuous Euler–Bernoulli beam system, the
Timoshenko beam effects of rotational inertia and shear deformation will be neglected. Neglecting rotational inertia
implies that the mass-moment of inertia is zero (J-0). To neglect the shear deformation effect, the translational springs
interconnecting the cars are given very large values (i.e. kZ-1, or say, 1015), so that the cars cannot undergo lateral
translational motion. In fact, letting J-0 and kZ-1 (i.e. G-1, see Eq. (21)) in the Timoshenko equation [31],

EI
q4y

qx4
þm

q2y

qt2
� Jþ

EIm

kAG

� �
q4y

qx2qt2
þ

Jm

kAG

q4y

qt4
¼ pðx,tÞþ

J

kAG

q2p

qt2
�

EI

kAG

q2p

qx2
, (22)

we obtain the Euler–Bernoulli equation,

EI
q4y

qx4
þm

q2y

qt2
¼ pðx,tÞ: (23)

In addition, we employ the relation ka ¼ EI=l�c in Eq. (21). In the previous study [19], we have undertaken a comparison
between the present model and the pinned–pinned continuous Euler–Bernoulli beam, because a certain amount of work
for pinned–pinned continuous systems had been studied in the past. The values of the variables of the present model are
chosen in order to reduce the model to the equivalent continuous Euler–Bernoulli beam model. It has been shown that the
present model is in good agreement with previous results for pinned–pinned continuous systems, which further verifies
the methodology of the present model. In addition, the present lumped-parameter Timoshenko-beam (LTB) model can
replicate the dynamical behaviour of a continuous Euler–Bernoulli beam under certain conditions [19]. Also, because it was
shown that the overall dynamical behaviour of the lumped-parameter Euler–Bernoulli (LEB) model and that of the
continuous Euler–Bernoulli model subjected to fluid dynamic forces are similar to each other [26], the LTB model can
replicate the dynamical behaviour of the LEB model [19].

3. Local and distributed imperfections of disordered LTB and LEB trains

Table 1 presents the system parameters employed in this study. The number of cylinders of the LEB and LTB trains is set
at N=16, which is a typical number of cars in high-speed trains in Japan. All dampers (dashpots) of the system are set to
zero to highlight the effects of disorder.

Local and distributed imperfections are taken into account by independently changing the mass constants, m (and mass-
moment of inertia, Jc), and the spring stiffnesses, k (kf, kb, ka, or kZ), of the system shown in Fig. 1. Local imperfections
involve a different component substructure property (mass m, and the spring stiffnesses kf and kb) in a single car in the
middle (or end) of the other, identical ones. Distributed imperfections involve a deviation in the mass, m, and the
supporting spring stiffnesses, kf and kb, and the components of the coupler, the rotational stiffness, ka, and the translational



Table 1
Values of system parameters for a finite-length train in a tunnel.

N=16 2lj (= lcar)=14.1 (25 m) LA=226.0 (400 m)

a=1.77 m b¼ 0:72 R*/a=2.24

A/Ad=0.2 Au=A¼ 0 rf ¼ 1:23 kg=m3

rcar ¼ 151:6 kg=m3 CT=0.01288 CN=CT/2=0.00644

CD=0.0 Cb=0.157 fn=1.0

ft=0.8 kf=kb=353 000 N/m (=k0) ka ¼ 30 000 000 Nm=rad

kZ ¼ 9800 N=m All dampers=0

2 4 6 8 10 12 14 16
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Fig. 5. Random imperfections in mass m or spring stiffness k, with uniform probability in the interval [0, 0.1].
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stiffness, kZ, between cars with a distribution of random imperfections between 0 and 10 percent of the ‘‘perfect’’ value;
thus, Dm=m and Dk=k are random variables with a uniform probability density function in the interval [0, 0.1], as shown in
Fig. 5. The imperfections in Fig. 5 are produced by using a random number generator. (Note that results of a similar
qualitative nature can be obtained if we employ other random imperfections of [0, 0.1] instead of those in Fig. 5.) For the
sake of clarity, it is assumed that the stiffnesses kf,j and kb,j in the same car have the same random variables as in Fig. 5. This
distributed imperfection may represent realistic operating conditions for the following reasons: (a) the car mass is
different in locomotives and vehicles, and it varies with the number of passengers; and (b) springs cannot be manufactured
precisely identical. Moreover, springs usually become stiffer with age due to permanent strain [32].

Note that imperfections in Jc and kZ will not be considered in the LEB model, but only in the LTB model, since in the
former the effects of rotational inertia and shear deformation are ignored.

4. Mode localization in the LTB model in still fluid

Here we consider the possibility of mode localization in a lumped-parameter Timoshenko-beam (LTB) model.

4.1. Local imperfections

As explained in the previous section, local imperfections will be taken into account by independently changing the
mass, m, and the spring stiffnesses, kf and kb, of a single car in the middle (or end) of an otherwise uniform train, where m,
kf, and kb are the structural components of the car. Two cases of local imperfections of disordered supporting springs will be
investigated, namely with kf,j = 5=kb,j = 5=0 and kf,j = 16=kb,j = 16=0; the results will be compared with those of the ordered

system. Since this study deals with train-like articulated systems as well as trains, and additionally intends to show a
difference of mode localization phenomena between the LTB and LEB systems, not only 10 percent random variations but
also drastic local imperfections (kf=kb=0) will be considered.

The mode shapes of the lowest three modes of LTB trains with ordered (open circles) or disordered (solid circles)
supporting springs in the middle car—kf,j =5=kb,j = 5=0—are illustrated in Fig. 6. Note that the open or solid circles
correspond to the ends of each car and the horizontal lines in-between to the car bodies. Mode 1, the fundamental mode
for the ordered (open circles) supporting springs has no nodes, which is a typical for coupled bodies with free-free
boundary conditions; mode 2 for the ordered system has a node at the centre of the train, and mode 3 has two nodes. Note
that the ordered system of the Timoshenko beam seems to behave purely as a shear beam where the rigid bodies of the
chain do not rotate (a¼ 0), although they could. This is because ka is given a very large value of 30�106 N m/rad as
presented in Table 1, so that the rotational displacement of the rigid bodies of the chain is relatively small, compared to the
translational one (kZ is 9800 N/m).

The mode shapes for the disordered system are different. The translational displacement of the middle car, Car 5, in
mode 1 is much larger than the others, which are actually motionless; motion is trapped within Car 5, clearly indicating
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Fig. 6. Lowest three modes of LTB model with local imperfections in kf and kb: kf,j = 5=kb,j = 5=0; u=0.
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mode localization. In contrast, in modes 2 and 3, the displacement of Car 5 is much smaller than the others and there is no
mode-trapping for these modes.

Next, the mode shapes of the LTB trains with disordered supporting springs in the tail-end car—kf,j = 16=kb,j = 16=0—are
given in Fig. 7. The translational displacement of Car 16 of mode 1 is much larger than the others, just as in the case of Car 5
in Fig. 6. In mode 2, the rotational displacements of the last few tail-end cars are much larger than the others. Conversely,
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in mode 3, the displacement of Car 16 is much smaller than the others. That is, motion in modes 1 and 2 seems to be
trapped within the few tail-end cars, but not in mode 3.

These results in Figs. 6 and 7 indicate that LTB models with local imperfections in the supporting springs result in mode
localization phenomena. Next, local imperfections in the mass, m, are examined. When the mass of Car 5 is doubled, for
instance, mode localization is observed, similar to that for the case of the supporting springs discussed above; hence, no
figures are presented.

From all these results, we can conclude that LTB models with local imperfections in the mass or the supporting springs
of the car components display mode localization phenomena. Note that this type of mode localization, due to local

imperfections, is roughly predictable from the distribution of imperfections. All the mode localization phenomena
discussed above are related to the specific car attached via disordered supporting springs or having an imperfection in
mass.
4.2. Distributed imperfections

As mentioned in Section 3, distributed imperfections involve changing independently the mass, m, or the springs, k (kf,
kb, ka, or kZ), by an amount Dm or Dk, where Dm=m or Dk=k are random variables with uniform probability density function
in the interval [0,0.1] as in Fig. 5.

The mode shapes of the disordered system with distributed imperfections in the mass, m, are shown in Fig. 8, as well as
those for the ordered system. In mode 1, the translational displacement of the last few tail-end cars for the disordered
system (solid circles) is much larger than the others, which are actually motionless. In mode 2, the displacements of a few
leading cars are much larger than the others. Similarly, in mode 3, the displacements of a few of the middle cars are much
larger than the others. From these mode shapes, it is evident that energy in modes 1, 2, and 3 is trapped within the tail-end,
the leading, and the middle cars, respectively, with the others remaining almost stationary. The three modes have different
locations of peak displacement which cannot be perfunctorily predicted from the distribution of imperfections in Fig. 5.

Next, the mode shapes of the train with imperfections in the supporting spring stiffnesses, kf,j and kb,j, are shown in
Fig. 9. As in the case of mass imperfections, the motions here in modes 1, 2, and 3 are trapped within some adjacent cars,
i.e. about Car 13, Car 6, and Car 6 of the train, respectively, with the others remaining virtually motionless.

Finally, the mode shapes of the train with imperfections in the rotational, ka, or translational, kZ, springs between cars
are shown in Fig. 10. Note that the effects of ka and kZ have been examined separately, but practically the same results are
obtained, as shown in Fig. 10. The mode shapes of the disordered and ordered systems are almost coincident; i.e., the
system is practically unaffected by the distributed imperfections in the rotational or translational springs between the
cars; no mode localization occurs.
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Fig. 8. Mode localization of the lowest three modes of LTB model due to distributed imperfections in m: 10 percent random variation in m; u=0.
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From the foregoing results, it is shown that the LTB models with either local or distributed imperfections in the mass, m,
and the supporting spring stiffnesses, kf and kb, which are the component properties of the car and thus affect the natural
frequencies of the system, exhibit mode localization phenomena; in contrast, distributed imperfections in the springs ka or
kZ which couple the cars together do not give rise to any mode localization. Table 2 summarizes these results.



Table 2
Conditions of mode localization of the LTB and LEB models due to imperfections in mass and springs.

Parameter of train Mass: m Supporting springs: kf, kb Springs between cars: ka ,kZ

Imperfections Local Distributed Local Distributed Distributed

LTB model ML ML ML ML No

LEB model ML No ML No No

ML=Mode localization.
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Note that qualitatively similar results are obtained if we employ other random imperfections, say of [0, �0.1] instead of
[0, 0.1].
5. Mode localization in the LEB model in still fluid

In the previous section, the effects of the local and distributed imperfections on mode localization phenomena of the LTB
model have been studied. Here, in the same way, mode localization phenomena in the Euler–Bernoulli beam (LEB) model
will be examined. Note that, in the LEB model, the effects of rotational inertia and shear deformation are ignored, as
mentioned in Section 2.7.
5.1. Local imperfections

The mode shapes of the disordered system with local imperfections in the supporting springs of the middle car
(kf,j = 5=kb,j = 5=0), as well as those for the ordered system, are shown in Fig. 11. (Note that the mode shapes of the ordered

LEB model virtually coincide with those of the LTB model.) In mode 1 of the disordered system, the translational
displacement of a few of the middle cars around Car 5 (solid circles) is much larger than the others which remain almost
stationary. Motion in mode 1 seems to be trapped around Car 5. On the other hand, in modes 2 and 3, the displacements of
Car 5 are much less than the others; moreover, there is no trapping of motions within the train. As mentioned previously in
Section 2.7, the value of kZ in the LEB train is not truly infinite but very large (say, 1015) and thus shear strains in the
eigenmodes of LEB are observed.
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In the same manner, local imperfections in the supporting springs for the tail-end car (kf,j =16=kb,j = 16=0) and in the mass
(doubling the mass), for the same car are examined separately. Mode localization phenomena are observed just as in the
case of Car 5 above; hence, no figures are given here. Thus, we conclude that LEB models, with local imperfections in either
the mass or supporting springs, demonstrate mode localization.
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Fig. 12. No mode localization of the lowest three modes of LEB model due to distributed imperfections in m: 10 percent random variation in m; u=0.

R
el

at
iv

e
di

sp
la

ce
m

en
t

Mode 3

R
el

at
iv

e
di

sp
la

ce
m

en
t

Mode 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

1

0

-1

1

0

-1

1

0

R
el

at
iv

e
di

sp
la

ce
m

en
t

Mode 1 (LEB Model)

Car
 Ordered
 Disordered kf & kb

Fig. 13. No mode localization of the lowest three modes of LEB model due to distributed imperfections in kf and kb: 10 percent random variation in kf and

kb; u=0.



Y. Sakuma et al. / Journal of Sound and Vibration 329 (2010) 5501–55195514
It is remarked again that this type of mode localization due to local imperfections is roughly predictable from the
distribution of imperfections; all the mode localization phenomena discussed above are related specifically to the cars
attached to the disordered supporting springs or the cars with imperfections in mass.
5.2. Distributed imperfections

The effect of distributed imperfections in the mass, m, and the spring stiffnesses (kf and kb, ka, and kZ) are investigated
separately. First, the mode shapes of the disordered system with distributed imperfections in the mass, m, and the
supporting springs, kf and kb (which are components of the cars) are shown along with the mode shapes of the ordered
system in Figs. 12 and 13, respectively. The mode shapes of the disordered system (solid circles) are similar to those of the
ordered one (open circles). It is seen that LEB models with distributed imperfections in the mass, m, or the supporting
springs, kf and kb, exhibit no mode localization. Next, in the same way, the effects of ka and kZ, which couple the
components of the car together, on mode localization are examined independently. Again, no mode localization
phenomena are observed, just as in Fig. 10. It is concluded that the LEB models with distributed imperfections do not
demonstrate mode localization phenomena.

It should be mentioned that weak localization seems to have occurred in the LEB models with distributed imperfections
in the mass (Fig. 12) and the spring stiffnesses kf and kb (Fig. 13) because the mode shapes of the disordered systems are
similar but they are different to those of the ordered ones. Since the amplitude decay per substructure for weak localization
is much smaller than that for strong localization, the effect is not significant for systems consisting of a limited number of
substructures like the present system, but it is for those of several hundreds or thousands of substructures such as atom
chains and lattices in Physics [12].
6. Discussion of mode localization in the LTB and LEB models in still fluid

Conditions of mode localization for the LTB and LEB models due to imperfections in mass and springs are summarized
in Table 2. It is seen that mode localization phenomena are observed in all cases (both LEB and LTB models) with local

imperfections in mass and supporting springs. On the other hand, mode localization phenomena due to distributed
imperfections can be observed only in the LTB model with distributed imperfections in mass and supporting springs. That is,
for the LTB train, distributed imperfections in mass and supporting springs, which are components of the car and thus
affect the natural frequencies of the system, have a great influence on mode localization phenomena, while the springs
between cars, which couple these components together, have less effect. On the contrary, LEB models with distributed
imperfections exhibit no (strong) localization phenomena. Hence, the Timoshenko beam effects of rotational inertia and
shear deformation have a great influence on mode localization phenomena. These results (in still air) are expected to be
sensibly the same as for the system in vacuum.

When the LEB model is considered, the members of the chain are strongly coupled, so that localization can occur only
for very large (local) imperfections. If, in contrast, almost the same degree of imperfections is distributed along the chain,
the distributed local defects are not sufficient to trigger strong localization but weak localization, which has little effect on
the dynamics of most engineering structures and is thus of little interest here. Note that these conclusions are in good
agreement with previous results that show that structures with strong coupling between substructures are not expected to
display (strong) localization phenomena, e.g. Refs. [11,12], and that Timoshenko beam effects have a great influence on
mode localization [15].

It was shown in Ref. [19] that the dynamics (stability) of LEB and LTB theories are fundamentally different in the
conditions for positive work to be done by the fluid on the system for the clamped-free LEB and free-free LTB models. This
essential difference between the LEB and LTB systems may explain the reason why the LTB train is more susceptible to
mode localization than the LEB train.

It should be noted that the location of peak displacements for mode localization due to distributed imperfections may be
more difficult to predict than those due to local ones, because the location of the localization is related to the cars
associated with the disordered components, while for distributed imperfections this is not true.
7. Dynamics of the disordered LTB model subjected to flow

In the foregoing sections, mode localization phenomena in the LTB and LEB models in still fluid (u=0) have been investigated
by examining mode shapes. In this section, the dynamics of the disordered systems of LTB trains subjected to flow will be
investigated. As in previous sections, two kinds of disordered systems will be studied: (i) with local imperfections, specifically
with kf,j=16=kb,j=16=0; and (ii) with distributed imperfections in the supporting springs—the distribution of random
imperfections of [0, 0.1] in kf and kb. First, for reference, the mode shapes of the ordered LTB train system subjected to flow will
be compared with those in still fluid. Then, a stability analysis is undertaken, yielding Argand diagrams showing the real and
imaginary parts of the eigenvalues of the ordered and disordered systems as a function of the dimensionless flow velocity u. In
addition, mode shapes of the disordered system subjected to flow will be illustrated and compared with those in still fluid.
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7.1. Mode shapes of the ordered system

Fig. 14 shows the mode shapes of the modes with the lowest three frequencies for the LTB train, with and without flow
(u=0 and 9.0). (The reason for choosing u=9.0 will be explained in the next subsection.) The mode shapes of the system
subjected to flow (x symbol) are different from those in still fluid (open circles), thus illustrating that the fluid dynamic
forces acting on the system modify the mode shapes [19,25]. The extent of these changes in mode shapes will be noted for
estimating the effect of the fluid dynamic forces on the disordered systems.
7.2. Local imperfections

The stability of the disordered system with local imperfections in the supporting springs—kf,j = 16=kb,j =16=0—is
investigated first. Fig. 15 gives the Argand diagram of the lowest three eigenvalues of an LTB train, with ordered and
disordered supporting springs. The upper figure is an enlarged view of the upper part of the Argand diagram close to
ImðlÞC0:37.

First, the dynamical behaviour of the ordered system (hollow symbols) is discussed. As seen in the upper figure, with
increasing flow velocity, starting from zero, free oscillations of all three modes are damped. As the flow velocity increases
further, however, the damping in mode 1 is diminished and the system may become unstable by dynamic instability at a
value of u slightly higher than uC9:0, where the locus eventually crosses the ImðlÞ�axis. However, ReðlÞ for modes 2 and 3
is always negative, and thus the system remains always stable in these modes. This is a typical dynamical behaviour of the
lumped-parameter Timoshenko-beam (LTB) train with ordered supporting springs, cf. Ref. [19].

Next, the dynamical behaviour of the disordered system (solid symbols) with kf,j = 16=kb,j =16=0 is discussed. Free
oscillations in all three modes are damped for relatively small u, as before. As the flow velocity is increased further,
however, the system may become unstable by flutter in mode 3 at uC8:3; i.e., the instability is associated with a different
mode number and flow velocity than for the ordered system. In the same way, at uC10:0, the system may become
unstable by flutter in mode 2. On the other hand, in mode 1 at uC10:961, the frequencies become purely real, bifurcating
on the ReðlÞ�axis; the first branch of this mode goes through the origin (ReðlÞ40) at uC10:982, indicating buckling.

These results indicate that, even though only the tail-end car is ‘‘defective’’ (kf,j =16=kb,j = 16=0), that is, only one-
sixteenth of the supporting springs in the train are deleted, the dynamical behaviour of the LTB ordered train system
changes considerably in the following ways: (a) the ordered system may become unstable by flutter only in mode 1, while
the disordered system loses stability by flutter first in mode 3 and then in mode 2, and finally by bucking in mode 1; (b) the
critical flow velocity is reduced from uC9:0 in mode 1 to uC8:3 in mode 3; and (c) the frequencies of oscillation of the
system, which are proportional to the imaginary parts of the eigenvalues, are significantly different.
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Finally, the mode shapes of the disordered system at u=0 and 9.0, together with the ordered one at u=0 are shown in
Fig. 16. It is now clear why we have selected the flow velocity of u=9.0: the ordered system becomes unstable by flutter at
uC9:0 as shown in Fig. 15. It is apparent that the mode shapes of the disordered system both at u=0 and 9.0 (solid and x

symbols) are significantly different from those of the ordered ones shown in Fig. 14.

7.3. Distributed imperfections

The stability of the disordered system with distributed imperfections in the supporting springs—the distribution of
random imperfections of [0, 0.1] in kf and kb—is investigated. Fig. 17 gives the Argand diagram of the lowest three
eigenvalues of the LTB train with ordered and disordered supporting springs. The dynamical behaviour of the ordered and
disordered systems can be discussed in the same manner as in Section 7.2. The results in Fig. 17 indicate that increasing the
supporting spring stiffnesses randomly up to 10 percent may change the dynamical behaviour of the LTB train in the
following ways: (a) the order in which modes go unstable is changed, i.e., at first, the ordered system may become unstable
by flutter in mode 1, while the disordered system loses stability by flutter in mode 2, mode 3 and then in mode 1; and (b)
the critical flow velocity is increased from uC9:0 in mode 1 to uC9:3 in mode 2.

Finally, the mode shapes of the disordered system at u=0 and 9.0, together with the mode shapes of the ordered system
at u=0 are shown in Fig. 18. It is seen that the mode shapes with disordered imperfections both at u=0 and 9.0 (solid and x

symbols) are significantly different from those of the ordered ones shown in Fig. 14.

8. Conclusions

With the aid of a simplified model for a high-speed train moving in a tunnel, mode localization and stability of
disordered trains of flexibly interconnected rigid bodies with elastic supports subjected to fluid dynamic forces are
investigated numerically by examining mode shapes and eigenvalues. The conditions of mode localization in the LEB and
LTB trains due to imperfections in the mass and the springs have been clarified.

The main findings obtained from this study are summarized as follows:
(i)
Fig. 1
sprin
Rotational inertia and shear deformation effects, taken into account in the LTB model, have a considerable influence on
mode localization phenomena.
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(ii)
 The LEB models with local imperfections in either the mass or supporting springs demonstrate (strong) localization
while those with distributed imperfections do not demonstrate strong but rather weak localization.
(iii)
 Mode localization in the LTB model with imperfections occurs also in the presence of flow. The fluid dynamic forces
acting on the system can modify the shapes of mode localization.
(iv)
 Imperfections in the supporting springs have a considerable influence on the stability of the LTB train. If the
supporting springs on the tail-end car are removed, the LTB train may lose stability, first by flutter and then by
buckling with increasing flow velocity, whereas the ordered train loses stability only by flutter.
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